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1. Introduction 
 
 The subject of biclustering is chiefly concerned with locating submatrices of gene 
expression data that exhibit shared trends between genes. That is, from one attribute to 
another, each gene’s expression in the bicluster shifts approximately the same amount. 
The goal is to determine sets of related genes that are affected similarly by different 
experimental procedures. In the terminology of biclustering, genes are called objects and 
the independent variables of the microarray analysis are called attributes. 
 This problem has classically been approached by casting objects and attributes as 
vertices of a bipartite graph and assigning weights to edges representing the 
corresponding expression level. Based on findings with this perspective, researchers have 
generally agreed that the biclustering problem is NP-hard. 
 In this report, I will briefly describe a recent approach to biclustering, the δ-
pCluster method1. The discussion includes my effort to implement the algorithm and a 
modification I designed to solve some problems I experienced with this method. 
 
2. Problem Statement 
 

Let dij be the matrix element of object i under attribute j. Let O and T be a subset 
of objects and attributes respectively. (O, T) forms a δ-pattern cluster if the absolute 
difference of the differences of the attribute values of two objects is less than a threshold 
δ for every pair of objects and attributes. More formally: 

!x, y "O,!a,b "T , (dxa # dxb ) # (dya # dyb ) $ % & (O,T ) is a % -pCluster  

The problem is to find all δ-pClusters (O, T) with no less than a minimum number 
of objects and attributes. 
 
3. Related Work 
 

Cheng and Church2 introduced the bicluster model based on mean squared reside 
scores with a threshold δ. They also offer a reduction from the balanced complete 
bipartite subgraph problem to finding the largest square δ-bicluster. This demonstrates a 
special case of biclustering is NP-hard, but leaves the general question of the complexity 
of finding the largest rectangular δ-bicluster unsolved. Cheng and Church also offer a 
polynomial-time randomized greedy algorithm to calculate biclusters. 

Yang et al.3 expanded on the work of Cheng and Church by introducing the 
concept of α-occupancy, which allows missing values in a bicluster up to a threshold. 
The residue score of a missing value is then defined to be zero. They present FLOC, a 
polynomial-time move-based randomized algorithm, to compute biclusters much more 
efficiently than the Cheng-Church algorithm. Yang et al. also suggest that biclustering is 
a generalized case of traditional subspace clustering (i.e., the CLIQUE algorithm). The 
FLOC algorithm is explored in detail in Yang et al.4 and it is shown to locate better 
results faster than the Cheng-Church algorithm. 



Each of these methods use mean squared residues to evaluate the score of a 
bicluster. Wang et al. point out that, when this formula is used, it is common to find 
submatrices of a δ-bicluster that are not a δ-bicluster. While seemingly contradicting the 
basic premise of a bicluster, this property also inhibits the design of efficient algorithms 
for biclustering. 

Many other biclustering algorithms have been developed since Cheng and Church 
introduced the concept. Madeira and Oliveira5 catalogued 19 different algorithms with 
approaches such as iterative row and column clustering combination, divide and conquer, 
greedy iterative search, exhaustive enumeration, and distribution parameter identification. 
Several biclustering applications are also described. 
 
4. Methods 
 
 Wang et al. present δ-pClusters to solve the problems related to mean squared 
resides. The first advantage of the pCluster model is that any submatrix (O’, T’) of a δ-
pCluster (O, T) is also a δ-pCluster. This property is fundamental to the pCluster 
algorithm, which locates δ-pClusters by first identifying two-object and two-attribute 
pClusters and incrementally builds larger sets. The pCluster algorithm is also 
deterministic and will not miss any qualified biclusters, unlike Cheng-Church and FLOC, 
which only provide approximations of the full bicluster set. 
 The key concept behind pCluster is the maximum dimension set (MDS), which 
are maximum length contiguous subsequences of the sorted values of the difference of 
two objects across all attributes bounded by the threshold δ. In the following example, the 
rows of Dxy are objects x and y and the columns are attributes a through e. The vector Sxy 
is the difference of the objects for each attribute, and it is sorted in  
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Figure 1: Maximum dimension sets. 
 
 The paper presents algorithms for building maximum dimension sets for each 
object pair and attribute pair, pruning these sets, and building a prefix tree of the object-
pair maximum dimension sets. These algorithms are conceptually simple and easy to 



implement. The result is a rooted tree in which each node O under a path T corresponds 
to a candidate bicluster of objects O and attributes T. 
 The final step is to prune nodes of the prefix tree and discover valid biclusters in a 
postorder traversal. This technique is given in figure 2. 
 

 
Figure 2: Prefix tree pruning and bicluster discovery (Wang et al.). 

 
5. Advantages and Disadvantages 
 
 The pCluster method is demonstrably improved over CLIQUE, and Yoon et al.6 
describe an enhanced version of pCluster that performs better than the Cheng-Church 
method, but I could not find any documented comparisons between pCluster (enhanced 
or otherwise) and FLOC, the enhanced version of Cheng-Church. Since these two 
methods are closely related in the world of biclustering, I think a comparison is due. 
 The form of pCluster given by the paper is said to perform poorly on very large 
data sets, e.g., greater than 1000 genes. Wang et al.7 address this problem by introducing 
a new measurement technique and counting tree algorithm, which performs better than 
pCluster on large data sets. It may be feasible to sacrifice a degree of approximation for 
faster results and redesign pCluster as a randomized algorithm, more akin to the Cheng-
Church or FLOC methods. 
 
6. Improvements 
 

I originally implemented the δ-pCluster exactly as given, but I quickly ran into a 
reoccuring problem with the prefix tree pruning and bicluster discovery method. Consider 
the case of a node with objects (w, x, y, z) under the path of column (a, b, c). If the 
maximum dimensions sets of the column pairs are each {(w, x, y), (x, y, z)}, then the 
objects w and z are not removed from the node and the bicluster (w, x, y, z), (a, b, c) is 
discovered. This does not seem correct, however, since under no column pair was the set 
of objects (w, x, y, z) fully supported. A more intuitive bicluster is (x, y), (a, b, c), since 
objects x and y are fully supported by each maximum dimension set. 

I designed an implemented an alternative to the prefix tree pruning and discovery 
algorithm. This is presented in figure 3. 

 



for each node n encountered in the post-order traversal:

O = objects in n

T = columns represented by n

C = !a,b"T pairClusters(a,b)

For each a,b "T :

For each c "C :

c = maxMDS"pairClusters(a,b){c#MDS}

For each c "C :

If c $ nr :

Output (O,T )

Add O to nodes which have one less column than n

 

Figure 3: Alternative pruning and discovery method. 
This method relies on the intuition that every bicluster embedded at a node must 

be a subset of some maximum dimension set of each column-pair of the node’s path. 
First, the candidates C are collected from the maximum dimension sets of each column 
pairs. Then, each candidate c is pruned by replacing it with the maximal intersection of c 
and the maximum dimension sets of each column pair. This ensures that each candidate is 
fully supported by each column pair. The remaining candidates of sufficient size are the 
biclusters under the node’s columns; no verification step is necessary. 
 
7. Evaluation & Conclusion 
 
 I implemented the original algorithm and modified algorithm in Python using 
simulated data with single embedded biclusters. Test showed repeatedly that the original 
algorithm incorrectly computed biclusters in the manner described in section 6. This was 
determined by evaluated each discovered bicluster against the threshold parameter δ. The 
modified algorithm did not report any false biclusters. Moreover, it always successfully 
located the embedded bicluster. Approximately 2000 experiments with 20x20 data 
containing 5x5 biclusters were performed. 
 In conclusion, the prefix tree pruning and bicluster discovery method described in 
this paper is adequate to discover biclusters in candidate sets. 
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