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ABSTRACT 
This paper describes a method to detect brake lights of 
road vehicles by color analysis and segmentation of for-
ward-facing images, suitable for an autonomous vehicle. 
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INTRODUCTION 
Detecting other vehicles is a challenging task in designing 
an autonomous vehicle system. Such a system must be able 
to track the speed and relative location of other vehicles on 
the road. In addition, the system should respond to informa-
tion from other vehicles, such as turn signals and brake 
lights, which indicate the vehicles’ intended actions. In this 
paper, I describe a system to robustly detect the presence of 
vehicle brake lights in arbitrary (not necessarily sequential) 
color images. 

This problem has been approached in several other fields 
with interesting applications. Sukthankar1 developed an 
integrated system for following vehicles at night that rec-
ognized brake lights and turn signals. Carswell and 
Chandran2 identified vehicles by tail lights to recognize 
erratic or drunk driving. Several patents by Matsumoto, et 
al.3, Slotkowski, et al.4, and Stam, et al.5 have also de-
scribed tail light detection methods for automatically dim-
ming head light intensity when other vehicles are detected 
in front of the sensor. These systems may be integrated into 
consumer vehicles, as in the Auto Dimmer Module featured 
below, from the patent file of Slotkowski, et al.. 

 
Figure 1: Tail light detection mechanism 
integrated with a consumer vehicle’s head 
light controller. (Slotkowski, et al.) 

METHODS 
Given a forward-facing color image, I first extract pixels in 
a range of hue, saturation, and brightness that correspond to 
tail lights. Connected pixels are grouped (segmented) into 

regions. Region pairs are then classified by likelihood of 
being the outer two tail lights of a vehicle. Another round 
of segmentation is performed with relaxed saturation and 
brightness boundaries in order to capture the central brake 
light, which is often dimmer and smaller than the outer tail 
lights. Each region pair is compared to each relaxed region 
for likely candidates, based on several assumptions about 
the geometry of brake lights. Finally, the best candidates 
are returned as region triplets corresponding to brake lights. 
Region Segmentation by Color 
I assume that the light from brake lights occupies a narrow 
range of hue, saturation, and brightness. Given these 
ranges, I construct a binary image where white corresponds 
to the pixels of the color image within the ranges. Since the 
range of hue that I’m interested is chiefly red and the digi-
tal representation of red is 0 (of 255), I first shift the hue of 
the image by 128. Given this shift, manual measurements 
of brake light hue yielded a hue range of [110, 170], also 
pictured unshifted below. 

 
Figure 2: Brake light hue range (unshifted). 

Two separate instances of region segmentation by color are 
performed. First, a segmentation with saturation range 
[160, 255] and brightness range [160, 255] produces a “nar-
row-range” image that is expected to contain the regions 
corresponding to the outer two tail lights of the vehicles. 
The second segmentation with saturation range [96, 255] 
and brightness range [128, 255] produced a “wide-range” 
image that is expected to contain the region corresponding 
to the central brake light of the vehicle. Each segmentation 
is performed on the hue-shifted color image. The first seg-
mentation is necessarily a subset of the second. 
With the binary image in hand, segmentation is relatively 
simple. First, a morphological closure (dilation and erosion 
with radius 1) is performed to remove any “holes” in re-
gions or to connect regions that should be connected. Then, 
sets of 4-connected pixels are grouped together and as-
signed to distinct regions. For each region, I store the coor-
dinates (x, y) of the center, the number of pixels n, and the 
maximum distance r from any point in the region to the 
center, which I define as the region’s radius. 
Pairing Regions 
I consider each pair of regions in the narrow-range image 
as a candidate for the outer two tail lights of a vehicle. 
These pairs are pruned by three rules based on several as-



sumptions about the size and distance of actual pairs. The 
following figure summarizes the rules for a regon pair a, b. 
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 Figure 3: Region pair pruning rules. 
The size rule prunes pairs that are too dissimilar in pixel 
count. The angle rule prunes pairs that do not make an ap-
proximately horizontal angle. The distance rule prunes 
pairs that are too far apart or close together relative to their 
radii. In practice, the rules’ parameters were manually fixed 
as N = 3, A = 0.1, Dmin = 10, and Dmax = 35. If each rule 
holds for a pair, then that pair is returned. 
Detection 
The final step is to consider each narrow-range region pair 
and each wide-range region. Consider the region pair (a, b). 
Based on the distance d between a and b, two rectangles are 
created, a positive area (green) and a negative area (red). 

 
Figure 4: Positive and negative areas of a 
region pair. 

The positive area is centered horizontally between a and b 
and is parameterized by α, β, and γ. Relative to d, the width 
of the area is α, the height is β, and the altitude is γ from the 
line connecting a and b. The negative area is centered abso-
lutely between a and b and is parameterized by δ and ε. 
Relative to d, the width of the area is δ and the height is ε. 
Since a and b are not necessarily perfectly horizontal, this 
coordinate system may be arbitrarily rotated. 
Given the pair a, b, the average size of these regions is 
avgn = (a.n+b.n) / 2. Let c be the n-maximal wide-range 
region in the positive area such that c.n ≤ avgn. Let negn be 
the sum of n of wide-range regions in the negative area. If 

avgn > negn and c exists, then return the region triplet a, b, 
c as an instance of a brake light. This logic relies on the 
intuition that the central brake light should be the largest 
region in the positive area, but it should also be smaller 
than the outer tail lights. Also, there should not be much 
“noise” between the two outer tail lights, since there will 
not be lights in this part of the vehicle. In practice, the area 
parameters were manually fixed as α = 0.1, β = 0.25, γ = 
0.05, δ = 0.5, and ε = 0.1. 
EVALUATION 
A set of positive- and negative-example images of brake 
lights were collected in the University Heights area of 
Cleveland, Ohio. In each image, the presence and location 
of brake lights was correctly determined. In the following 
images, the positive-example images have brake lights cir-
cled, and the negative-example images are unchanged. 
 

 
Figure 5: Negative example. 

 

 
Figure 6: Positive example. 



 
Figure 7: Positive example. 

 

 
Figure 8: Negative example. 

 

 
Figure 9: Negative example. 

 
Figure 10: Positive example. 

 

 
Figure 11: Positive example. 

 

 
Figure 12: Negative example. 



 
Figure 13: Positive example. 

 
The following image illustrates how the positive and nega-
tive areas capture the central brake light and noise respec-
tively. In this example, using the same image as figure 10, 
the negative regions were not significant in size compared 
to the outer tail light regions. 
 

 
Figure 14: Positive and negative areas 
superimposed on wide-range regions. 

 
CONCLUSION 
The system is demonstrably capable of reliably recognizing 
brake lights under varied distances and during daylight. At 
present, the most significant limitations are the time re-
quired for each image (roughly 1-2 seconds on a Java plat-
form) and the lack of rigorous testing. 

Future work in this direction may seek to improve the seg-
mentation ranges for different lighting conditions (e.g., 
night, shadow) and further test the detection algorithm for 
different vehicle types (e.g., buses, trucks). 
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